If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2+31k+30=0
a = 7; b = 31; c = +30;
Δ = b2-4ac
Δ = 312-4·7·30
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-11}{2*7}=\frac{-42}{14} =-3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+11}{2*7}=\frac{-20}{14} =-1+3/7 $
| X+x+2x+6+2x+6=360 | | 1+4x/3=5 | | 4(2x-1)=8x+5 | | 8.25+1/4x=10.75 | | 2.46(5.4b-2.8)=-4.7(1+2.9b) | | -8x-8+3x-6=-3x+2 | | 49^x^+4=7^18^-x | | 2.46(5.4b-2.8)=-4.7(1+2.9b | | 12-q=62 | | 1/3(12y-9)=-19 | | y-(10)=4 | | 28=-9s+82 | | -3d+2=-7 | | 4z/10-3=6 | | 5|x+2|=30 | | |-4-x|=4 | | 7+5r=83-10r | | c+c+4c-20+4c-20=360 | | 21/4x-1/2x=44 | | -12+b/8=13 | | 4.6x–3.7=14.7 | | x+10+2x+x=90 | | 6q^2-40q+10=0 | | 49^x+4=7^18-x | | 8x+19=5x+37 | | 2/9n+1/2=2/3(n+) | | 22+(x÷2)=× | | 14.70=-9.2p+23.9 | | (x+54)=5x | | -9-8(1+4h)=-24.5 | | 7(x-2)=4x-12 | | 22+x÷2=× |